فرض. $DE\parallel BC$.
حکم. $\frac{AD}{AB}=\frac{AE}{AC}=\frac{DE}{BC}$.


اثبات تعمیم قضیهٔ تالس.

از $E$ خطی موازی با $AB$ رسم می‌کنیم تا $BC$ را در $F$ قطع کند.

چهارضلعی $BDEF$ متوازی الاضلاع است، پس
\[BF=DE.\quad(1)\]
با استفاده از قضیهٔ تالس روابط زیر برقرار است
\[DE\parallel BC\Rightarrow \frac{AD}{AB}=\frac{AE}{AC}.\quad(2)\]
\[EF\parallel AB\Rightarrow \frac{AE}{AC}=\frac{BF}{BC}.\quad(3)\]
از رابطه‌های \((1)\)، \((2)\)، و \((3)\) نتیجه می‌شود:
$$\frac{AD}{AB}=\frac{AE}{AC}=\frac{DE}{BC}.$$



نوشته‌های قبلی و بعدی


اشتراک
اطلاع از
شماره موبایل شما نمایش داده نمی‌‌شود.

2 پرسش‌ها و نظرات
Inline Feedbacks
مشاهده همه نظرات
ممد
مهمان
10 ماه قبل

سرعت سایت خیلی پایینه و عکسا بالا نمیاره

Takmili
Admin
پاسخ به  ممد
10 ماه قبل

مشکل عکس‌ها به‌خاطر سرعت سایت نبود.
یک مشکل فنی بود که برطرف شد.
سپاس فراوان از شما که کامنت گذاشتید.
لطفاً اگر موارد مشابهی دیدید، اطلاع دهید. ممنون از لطف شما