در شکل زیر، نقطه‌های \(E\) و \(F\) به‌ترتیب روی پاره‌خط‌های \(AB\) و \(AD\) قرار دارند. نقطهٔ \(G\) محل برخورد پاره‌خط‌های \(AC\) و \(BD\) است. همچنین، پاره‌خط‌های \(AG\)، \(BF\)، و \(DE\) یکدیگر را در نقطهٔ \(H\) قطع کرده‌اند.
اگر \(x\) یک عدد باشد و
\(\bullet\) مساحت مثلث \(AFH\) برابر \(4x+4\)،
\(\bullet\) مساحت مثلث \(DFH\) برابر \(2x+20\)،
\(\bullet\) مساحت مثلث \(DGH\) برابر \(5x+20\)،
\(\bullet\) مساحت مثلث \(CDG\) برابر \(5x+11\)،
\(\bullet\) مساحت مثلث \(BCG\) برابر \(8x+32\)،
\(\bullet\) و مساحت مثلث \(BGH\) برابر \(8x+50\) باشد،
آن‌وقت مقدار \(x\)، و مساحت مثلث‌های \(AEH\) و \(BEH\) را به‌دست آورید.


پاسخ تشریحی


 

 



نوشته‌های قبلی و بعدی


اشتراک
اطلاع از
شماره موبایل شما نمایش داده نمی‌‌شود.

5 پرسش‌ها و نظرات
Inline Feedbacks
مشاهده همه نظرات
Leyla gh
مهمان
5 سال قبل

با استفاده از تناسب مساحت ها در مثلث ABD و حل دستگاه مقدار x = 5 و y = 540/7 و z = 216/7

شایان طایفه
مهمان
5 سال قبل

X=۵
31~216/7=(S(AEH
77~540/7=(S(BEH

علیرضا پوورضا
مهمان
5 سال قبل

x مساوی 5 و مساحت مثلث AEH مساوی دویست و شانزده هفتم یا 216/7 = 6/7 30و مساحت مثلث BEH مساوی پانصدو چهل هفتم یا 540/7 = 1/7 77

محمدرضا جنت فریدونی
مهمان
5 سال قبل

X=5
BEH=60(مساحت)
AEH=48(مساحت)

نیکا جعفری زاده
مهمان
5 سال قبل

مساحت مثلث AEH می شود 4x+4
مساحت مثلث BEH می شود 8x+50
x=11.5