عکس قضیهٔ تالس
اگر خطی دو ضلع مثلثی را قطع کند و روی آنها پاره‌خط‌های متناظر متناسب ایجاد کند، آنگاه با ضلع سوم مثلث موازی است.

فرض. $\frac{AM}{AB}=\frac{AN}{AC}$.
حکم. $MN\parallel BC$.


اثبات عکس قضیهٔ تالس.

با روش برهان غیر مستقیم فرض کنیم حکم نادرست باشد، پس $MN\nparallel BC$.
از $M$ خطی موازی با $BC$ رسم می‌کنیم تا $AC$ را در $P$ قطع کند.

با استفاده از قضیهٔ تالس داریم
\[\frac{AM}{AB}=\frac{AP}{AC}.\quad(1)\]
ار مقایسه عبارت بالا با فرض نتیجه می‌گیریم
\[\frac{AP}{AC}=\frac{AN}{AC} \Rightarrow AN=AP.\]
چون $A$، $N$، و $P$ روی یک خط هستند و $N$ و $P$ هر دو در یک طرف $A$ قرار دارند، نتیجه می‌گیریم که $N$ بر $P$ منطبق است و
$$MN\parallel BC.$$



نوشته‌های قبلی و بعدی


اشتراک
اطلاع از
شماره موبایل شما نمایش داده نمی‌‌شود.

0 پرسش‌ها و نظرات
Inline Feedbacks
مشاهده همه نظرات